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Reverse engineering of biological pathways involves an iterative
process between experiments, data processing, and theoretical anal-
ysis. Despite concurrent advances in quality and quantity of data as
well as computing resources and algorithms, difficulties in deciphering
direct and indirect network connections are prevalent. Here, we adopt
the notions of abstraction, emulation, benchmarking, and validation in
the context of discovering features specific to this family of connec-
tivities. After subjecting benchmark synthetic circuits to perturbations,
we inferred the network connections using a combination of non-
parametric single-cell data resampling and modular response analysis.
Intriguingly, we discovered that recoveredweights of specific network
edges undergo divergent shifts under differential perturbations, and
that the particular behavior is markedly different between topologies.
Our results point to a conceptual advance for reverse engineering
beyond weight inference. Investigating topological changes under
differential perturbations may address the longstanding problem of
discriminating direct and indirect connectivities in biological networks.

reverse engineering | synthetic biology | direct and indirect connectivities |
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Afocal point of systems biology is the reverse engineering of
gene regulatory networks (1–5). The methods have shifted

from intuitive inference of local connectivities to comprehensive
analysis of large networks, involving heterogeneous data sets from
high-throughput experiments and complex theoretical tools (6–10).
Despite significant advances, a fundamental reverse engineering
bottleneck is the ability to discriminate between direct and indirect
connections. In a simple case, assuming three nodes in a cascade
formulation, where an input node is activating an intermediary node
which in turn is activating an output node, a reverse engineering
algorithm may infer an activating edge from the input node to the
output, even though there is no direct biological interaction.
Unfortunately, the limitation in correctly distinguishing the ef-

fects stemming from indirect connectivities is pervasive (11–13)
and justifies the urgent need for new and reliable methods to
eliminate spurious edges. Importantly, remedies to address this
problem should not further muddle the interpretation by removing
true network edges (14). A number of theoretical approaches have
been proposed to overcome this hurdle (4, 15–18), but the ability to
experimentally verify the conclusions drawn by reverse engineering
tools remains paramount.
The majority of efforts to address the verification issue adopt

in silico benchmark suites that are based on biological pathway
approximations (19). Although these models do include a number
of commonly observed topologies and have provided significant
insights, they do not fully capture the complexity of the biological
realm and the associated heterogeneity and intrinsic variability. On
the other hand, engineered synthetic gene circuits are orthogonal to
the endogenous pathways yet operate within the natural cellular
context using the available resources. Thus, synthetic networks are a
versatile platform for investigating specific connectivities and to-
pological properties and can ultimately guide us to deriving fun-
damental insights about biological systems and pathways (20–23).
We previously proposed a strategy based upon using a synthetic

gene network in human cells as a benchmark for reverse

engineering validation and refinement (24). Here, we built three-
node synthetic gene regulatory networks that incorporate direct and
indirect connectivities and used them as benchmarks in human
kidney cells. The first network is the type I coherent feed-forward
loop (25, 26), where the origin node (X) activates the target node
(Z) directly but also through an intermediate node (Y), with OR
logic at the output (Fig. 1A). The second network is a cascade motif,
where the origin node (X) regulates the target node (Z) indirectly
via an intermediary node (Y) (Fig. 1B). More specifically, the node-
to-node interactions are achieved through inducible transcriptional
regulation. The origin (X) and intermediary nodes (Y) contain bi-
directional promoter elements that drive the production of a fluo-
rescent reporter protein and a transactivator unit, and the target
node (Z) contains a unidirectional promoter for the production of a
fluorescent reporter protein only. Each node produces a fluorescent
reporter, which allows monitoring its state.
We commenced the experiments confirming the baseline behavior

of the synthetic networks under boundary and control conditions.
Subsequently, we systematically perturbed each network node using
short interfering RNAs (siRNAs) (27); then, we collected and
processed the flow cytometry measurements. Using these data, we
performed network reconstruction via nonparametric single-cell
data resampling followed by modular response analysis (4, 28).
The reconstruction results reproduced the benchmark network
topologies. Importantly, we identified divergent shifts in predicted
interaction strengths under differential perturbations, a feature
that can be critical toward discriminating between direct and
indirect connectivities.

Results
Design and Assembly of the Benchmark Synthetic Regulatory Networks.
The first of the two networks is the type I coherent feed-forward
loop (Fig. 1C). The plasmid for node X consists of a constitutively
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active bidirectional promoter flanked by the reporter fluorescent
protein TagCFP and reverse tetracycline-controlled transactivator
(rtTA) on either side. The regulatory unit rtTA serves as the
transactivator of the tetracycline-inducible expression system (Tet-
On) upon forming a homodimer and binding with the ligand
doxycycline (Dox). Activation of the downstream target node Y,
which consists of tetracycline response element (TRE) enhancer
flanked by cytomegalovirus (CMV) promoters on either side, re-
quires binding of active rtTA–Dox complex to the TRE enhancer.
Thus, the activation of node Y by node X depends on doxycycline.
The activation of node Y results in production of its fluorescent
reporter TagYFP and a heterodimeric transactivator composed of
the RheoActivator and RheoReceptor domains. The RheoActivator
domain consists of a ligand binding domain fused with the viral
transactivator VP16, whereas the RheoReceptor domain is a hybrid
of insect hormone ecdysone receptor (EcR) fused to yeast GAL4

DNA binding domain for target binding specificity to GAL4
response element. After dimerization of RheoActivator and
RheoReceptor, an EcR agonist such as ponasterone A induces
conformational change to the RheoReceptor such that the hetero-
dimer bound to GAL4 response element initiates transcription. In
our synthetic network, RheoSwitch dimer activates node Z by ini-
tiating transcription of its reporter fluorescent protein mKate2. To
achieve direct activation of node Z by node X, the node X produces
the RheoSwitch proteins in addition to TagCFP and rtTA.
The second of the two networks is a cascade motif (Fig. 1D),

where node X controls node Z exclusively through the activation of
intermediate node Y. To implement this architecture, we modified
the coherent feed-forward architecture by inserting a single base pair
in both of the node X RheoSwitch genes to induce a nonsense
frame-shift mutation. As the RheoSwitch heterodimer genes to-
gether constitute ∼30% of total plasmid size we selected introducing
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Fig. 1. The benchmark synthetic regulatory networks. (A) The first motif is a coherent feed-forward loop where node X regulates node Z in both a direct and
an indirect manner. (B) The second motif is a cascade, where node X activates node Z only by activating node Y. (C and D) Detailed information about the
synthetic gene networks. The activity of the three nodes X, Y, and Z can be quantified by the output fluorescent proteins TagCFP, TagYFP and mKate2,
respectively. The constitutive bidirectional promoter of node X also transcribes rtTA for node Y induction and the RheoSwitch dimers for node Z induction. For
the cascade motif, the translation of RheoSwitch dimer protein is prevented by nonsense mutation. In the presence of doxycycline, the constitutively
transcribed rtTA induces transcription of RheoSwitch in node Y. When ponasterone A binds to the RheoSwitch dimer, the entire complex serves as a
transactivator for the yeast Gal4 domain. Transcription at Gal4 domain results in production of mKate2 to indicate node Z activity. (E) Perturbation of each
node in the system is performed siRNA. Nodes X and Y are perturbed by synthetic siRNAs (FF3 and FF4, respectively) with the targets located in the 3′ UTR of
their corresponding targets. Node Z is perturbed by a custom siRNA that directly targets mKate2. IRES, internal ribosome entry site.
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Fig. 2. Validation of the coherent feed-forward
architecture. To validate the circuit behavior we
tested all combinations of the two small molecules.
The result analyzed by fluorescence microscopy
(A) and flow cytometry (B).
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a mutation instead of complete excision to avoid possible discrep-
ancies in transfection and transcription efficiencies due to differences
in plasmid and cassette size.
During the design stage we opted for a simple yet effective means

of perturbing the individual nodes via RNA interference (Fig. 1E).
We use a set of siRNA with previously confirmed function (29) for X
and Y and a custom siRNA for Z. More specifically, the siRNA-
based suppression of node X is achieved through addition of an FF3
target into 3′ untranslated region (UTR) of each transcript produced
by the constitutive bidirectional promoter. Similar to X, ubiquitous
siRNA-based suppression of Y is made possible by inserting an FF4
target into the 3′ UTR of each transcript produced by the bi-
directional TRE enhancer/CMV promoter. Node Z contains a single
transcript (reporter protein mKate2), and its activity is modulated by
a custom siRNA that directly targets the mKate2 transcript.

Validation of the Synthetic Gene Network Behavior. With the ex-
ception of node X which relies on a constitutive promoter, the activity
of the synthetic networks depends on the presence of the appropriate
ligand. In the cascade motif, Y requires doxycycline (Dox), and Z
requires an EcR agonist such as Genostat or ponasterone A (PonA).
In the type I coherent feed-forward loop, the requirement for acti-
vation of Y remains the same, whereas Z can be activated by the
combination of Dox and PonA or PonA alone. To confirm these
baseline conditions, the circuits were transfected in human embryonic
kidney cell line (HEK293), the ligands were introduced at saturating
concentrations, and measurements were performed using microscopy
and flow cytometry ∼48 h after transfection.
The microscopy measurements of the fluorescent outputs of both

benchmark networks show that the inducible transactivators for
both architectures function as desired with minimal leakage, thus
confirming the designed circuit topologies. In the feed-forward loop,
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Fig. 3. Validation of the cascade architecture. To
validate the circuit behavior we tested all combinations
of the two small molecules. The result analyzed by
fluorescence microscopy (A) and flow cytometry (B).
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node X activity is represented by the constitutively produced fluo-
rescent protein TagCFP and is observed regardless of the ligand
conditions (Fig. 2A). The addition of doxycycline, which enables X-to-
Y interaction by activating the synthetic transactivator rtTA, results in
production of the TagYFP fluorescent protein (Fig. 2A). The acti-
vation of node Z is mediated by the active form of RheoSwitch dimer,
which is produced by both nodes X and Y. Due to the constitutive
activity of node X, PonA is sufficient to activate node Z in the feed-
forward loop (Fig. 2A). These observations are confirmed by flow
cytometry-based population measurements, which show TagCFP
population in all scenarios and a distinct TagYFP population when
Dox is present, and mKate2 when PonA is present (Fig. 2B). The
same control experiments using the cascade network plasmid show an
identical response to the ligand combinations except for the node Z
activity (Fig. 3A). In the cascade motif, sequential activation of node
X and node Y are necessary for node Z activation. Thus, mKate2 is
only observed when Dox and PonA are present (Fig. 3A). Again, we
confirm these observations with flow cytometry (Fig. 3B).
Subsequently, to probe the parameter space and general behavior

of the circuits under perturbations we created mathematical models
of our benchmark circuits (SI Appendix, SimBiology Model, Figs. S1
and S2). The kinetic parameters were selected from literature (21,
30). We performed sensitivity analysis of the output node Z protein
concentration against the mRNA species of nodes X and Y (thereby
emulating RNAi perturbation). We observe that, in the feed-forward
loop, where node X activates node Z in a direct manner as well as an
indirect manner, the cumulative sensitivity of the Z node protein to
mRNA species of node X was always higher than that of node Y (SI
Appendix, Fig. S3). Conversely, in the cascade, where node X only
activates node Z indirectly through node Y, the production of node
Z protein was more sensitive to the node Y mRNA. Based on the
simulation results, we hypothesized that the topological differences
of the examined architectures may yield divergent responses to dif-
ferent degrees of perturbation. This hypothesis points to an in-
triguing scenario where the properties and outcome of signal
propagation after custom perturbation experiments can be exploited
toward distinguishing direct from indirect connectivities.

Modular Response Analysis. An intrinsic difficulty in capturing di-
rect interactions in a biological network is that any perturbation to a
particular node may rapidly propagate throughout the network,
thus causing global changes which cannot be easily distinguished
from direct effects. Rooted in metabolic control analysis, Modular
Response Analysis (MRA) uses steady state data obtained from
node-wise perturbation to express the network in terms of pair-wise
interaction sensitivities. To perform MRA (SI Appendix, Modular
Response Analysis Method), we first calculate the global response
coefficients (GRC) from experimentally measured responses to

perturbations using Δln(xi), where xi represents in our case the quasi
steady-state measurement of fluorescent reporter obtained via flow
cytometry. Once the functional modules (i.e., perturbation targets)
of the target network have been selected, the experimental pro-
cedure consists of the following steps: (i) measure the steady-state xi
corresponding to the unperturbed set of inputs pi, (ii) perform a
perturbation to each pi individually and measure the new steady-
state xi’, (iii) calculate the global response coefficients using the
steady-state data, and (iv) convert global response coefficients to
local response coefficients by inversion of the global response matrix.
In higher eukaryotes, perturbation can be achieved through the

down-regulation of mRNA, and hence protein levels, using RNA
interference (RNAi). This approach has shown to be successful in
mapping the positive and negative feedback effects in the Raf/Mek/
Erk MAPK network of rat adrenal pheochromocytoma (PC-12)
cells (31). Using a variant of the MRA algorithm (32), the authors
uncovered connectivity differences depending on whether the cells
were stimulated by epidermal growth factor (EGF) or, alterna-
tively, by neuronal growth factor (NGF).
We commenced the experimental reverse engineering process

by performing a systematic perturbation of each benchmark ar-
chitecture node. We first tested the efficacy of siRNA and cali-
brated the perturbation dosage against the feed-forward loop
architecture plasmid (SI Appendix, Figs. S4–S6; quantitative RT-
PCR results in SI Appendix, Fig. S7). As our goal was to find a
range of siRNA concentrations that result in moderate yet distinct
levels of suppression, we set our maximum siRNA concentration
at the manufacturer-recommended dose of 5 pmol and tested five
additional concentrations in decreasing magnitudes. To ensure
consistency, we cotransfected each siRNA with the network
plasmid and measured the circuit activity after 48 h via flow
cytometry. Across all three nodes, each of the siRNA was most
effective at suppressing the node for which it was designed to
disrupt; at least 60% suppression was achieved with the highest
siRNA concentration. We then selected the pair of siRNA con-
centrations that yield the largest difference in the activity of their
respective target node, as measured by mean fluorescence level.
Specifically, as illustrated in SI Appendix, Fig. S8A, we selected 1
pmol as “high” perturbation and 0.1 pmol as “low.”
After selecting the perturbation magnitude, we performed a

node-wise perturbation of the feed-forward circuit using the siR-
NAs that target each node supplemented with scrambled siRNA to
control for the total mass. As before, we used saturating concen-
trations of the small molecule inducers and applied the predefined
set of perturbations based on our calibration results. The three
fluorescent reporter protein profiles indicate a response consistent
with the benchmark network topologies, confirming the siRNA
operation (SI Appendix, Fig. S8B). Down-regulation in the
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fluorescence reporter expression is observed in two cases. Directly
by perturbing the actual node or indirectly by perturbing the up-
stream node responsible for its activation. For node X, a decrease
in TagCFP is observed only after direct perturbation; for node Y, a
decrease in TagYFP is observed after perturbation of nodes X and
Y; and for node Z, a decrease in mKate2 is observed after per-
turbation of nodes X, Y, and Z (SI Appendix, Fig. S8B).
We then proceeded with the recovery of the network topology

using population data (SI Appendix, Reverse Engineering of the
Benchmark Topologies Using Population Data). For each set of
perturbation responses, the global response coefficients were
calculated based on the weighted mean fluorescence of gated
populations. The pairwise sensitivity coefficients were then
obtained via calculating the local response coefficient (LRC) (SI
Appendix, Figs. S8 C and F and S9). To determine the signifi-
cance of the recovered LRC, we performed error propagation
using Monte Carlo simulations (31) rendering most of the pre-
dicted regulatory connections insignificant (SI Appendix, Monte
Carlo Simulation and Fig. S10). Notably, the reverse engineering
recovered a direct inhibitory connection between nodes X and Z
for both perturbation magnitudes (SI Appendix, Fig. S8F), which
may be attributed to mild retroactivity effects (33).

Reverse Engineering of the Benchmark Topologies Using Resampled
Single-Cell Data. To increase our confidence in predictions we de-
veloped a technique based upon bootstrapping, an alternative to
the sample statistics obtained from an aggregate population (i.e.,
mean and SD). Bootstrapping is a nonparametric resampling
method (34) designed to estimate the confidence interval of a given
statistic, and is particularly useful when the observed population
distribution cannot be characterized by typical distributional as-
sumptions such as normality (e.g., typical flow cytometry data). To
obtain a bootstrapped mean we: (i) resample with replacement the
dataset to the same number of times as the original population, (ii)
calculate the desired statistic from each sample, (iii) repeat the
process several times to form the probability distribution of the
subsampled mean (SI Appendix, Fig. S11). For our analysis, we
repeated the entire process 2,000 times to form the representative
probability distribution of a fluorescent reporter expression.
Subsequently, we produced a unique panel for each of the three

fluorescent reporters after perturbations to three different nodes, for
a total of nine distinct panels for the feed-forward circuit (Fig. 4 A–
C) and nine for the cascade (Fig. 4 D–F). Each frequency plot
consists of four different probability distributions, from resampled
means of fluorescent reporter before (empty) and after the two
perturbations (filled with gray for low and purple for high). For every
set of subsampled means that make up the probability distributions,
we treated them as a unique instance of the perturbation response
and fed these values to MRA to calculate the local response co-
efficients. The results, along with the 95% confidence interval of the
distribution, are plotted as a 1D scatter plot and shown in Fig. 5 A
and B. In this case, we were able to successfully recover all relevant
regulatory connections of feed-forward loop (Fig. 5C) and cascade
(Fig. 5D) networks with increased confidence. All of the recon-
structed edges are included in SI Appendix, Fig. S12.
Using our prior knowledge of our network, we confirmed that the

inferred connectivities are consistent with the network topology.
Moreover, the inferred interaction strengths and distributions pro-
duced by the reverse engineering algorithm reveal features of the
network that are not readily apparent and are in agreement with our
in silico sensitivity analysis. Specifically, to probe the effect of re-
sponse coefficient change due to perturbation magnitude shift we
calculated the difference between coefficients of equivalent edges
(Fig. 5 E and F).
For the feed-forward architecture we identified “perturbation-

sensitive edges.” In other words, we discovered edges that undergo
distinctively large shift in interaction strengths under differential
perturbations. In particular, we observe that for the feed-forward
architecture, increasing the perturbation magnitude dramatically
alters the inferred interactions arising from node X. Importantly,
there is a noticeable reversal in the strengths of activation between

node X to nodes Y and Z, whereas the interaction from node Y to
node Z remain largely unchanged (Fig. 5C). Specifically, after a
low perturbation, the recovered topology shows a prominent direct
activation of node Z by node X, whereas the topology recovered
after high perturbation shows a prominent activation of node Y by
node X. We postulate that the low perturbation is buffered as it
propagates through the intermediate node Y, therefore the direct
connection between X and Z appears to be more important.
Aligned with this observation, node Z is less sensitive to disruption
of node Y in the context of the feed-forward loop (Fig. 5B).
Compared with the feed-forward circuit, we found that the re-

verse engineering of the cascade is robust to perturbation strengths.
In fact, the recovered topology from two perturbation magnitudes
are almost indistinguishable except for small decrease in the Y-to-
Z interaction strength (Fig. 5F), despite the fact that the fluores-
cence reporter profiles clearly reflect the differences in perturba-
tion magnitude (Fig. 4 D–F). In contrast with the feed-forward
circuit, there is only one possible path of activation in the cascade
motif thereby the presumed buffering effect is not critical.
To further explore the effect of differential perturbation on the

reverse engineering results, we performed an additional experi-
ment using three perturbation magnitudes (SI Appendix, Fig. S13).
In this instance, we refer to the perturbation magnitudes as “low,”
“medium,” and “high.” We again observe the diverging trend of
response coefficient values between the two architectures. In the
feed-forward loop, each step-wise increase in perturbation magni-
tude affects the two edges originating from node X in contrasting
manner, highlighting the activation from node X to node Y while
reducing the weight of activation from node X to node Z (SI Ap-
pendix, Fig. S13 A and C). The recovered topologies of the cascade
motif undergo little to no change over same perturbation magni-
tude intervals (SI Appendix, Fig. S13 B and D). Finally, to quali-
tatively probe our observations we developed a phenomenological
model of the architectures (SI Appendix, Phenomenological Model).
Using this model we analytically calculated the local response co-
efficients under low and high perturbations and we indeed con-
firmed the divergent shifts in interaction strengths.

Discussion
Direct and indirect interactions are pervasive in all networks. The
inability to disentangle these interactions hampers reverse engi-
neering progress. Recent advancements in high-throughput ap-
proaches, combined with algorithm and methodological advances
through a host of community-wide efforts (12, 14, 19, 35) have
examined these aspects. In fact, attempts to fundamentally address
the issue by recognizing and filtering out the effects of indirect in-
teractions at a global scale have begun to surface (11). Meanwhile,
parallel developments in synthetic biology (23) have endowed re-
searchers with new tools that allow precise emulation of naturally
occurring topologies (21, 22). Networks orthogonal to the cellular
milieu can serve as a biomolecular topological “ground truth” (20,
24). Data gathered from benchmark synthetic circuits can com-
plement and inform algorithms, and offer a unique opportunity to
correlate topological properties to system identification.
The number of possible networks for a given set of nodes is large

and it grows exponentially with the number of nodes, making im-
practical their exhaustive construction. Fortunately, recent research
has uncovered that certain topologies appear more frequently than
others. Those topologies were dubbed “network motifs (25, 36).
The network topology does not specify the nature of the nodes, and
indeed the expectation is that the network behavior will be in-
variant to the changes in the molecular nature of the nodes and the
exact mechanism of the interactions between the nodes.
Here we constructed two synthetic networks that incorporate

direct and indirect connectivities. We successfully engineered the
benchmark architectures to be inducible with negligible leakage
and amenable to simple perturbations to facilitate the reverse en-
gineering analysis. After applying systematic perturbations and a
combination of nonparametric single-cell data resampling and
modular response analysis, we discovered response patterns that
are markedly different between the two topologies.
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Using the proposed methodology, individual nodes of a network
can be perturbed from their steady-state using transcriptional or
posttranscriptional inhibitors [e.g., TALEs/CRISPR (37, 38) or
siRNAs]. The pre- and postperturbation steady states can be
measured at the mRNA or protein levels, and fed into MRA to
predict divergent LRC and accordingly the network structure. Be-
yond small-scale networks, although motifs are composed of rela-
tively few elements, they are often embedded as “modules” (39–41)
in large networks that exhibit complex behavior. The term “mod-
ular” in MRA indicates that the same theoretical tools, in principle,
scale up to cover large networks that are connected through a small
number of “communicating intermediaries” (4, 28).
To conclude, unraveling the complexity of biological networks is

central to understanding biology. Our results point to a trans-
formative opportunity in reverse engineering of biological networks.
Taking into account inferred topological changes under differential
perturbations may provide a solution to the longstanding problem
of discriminating between direct and indirect connections.

Methods
Mammalian Cell Culture and Transfections. HEK293 cell line was maintained at
37°C, 100% humidity and 5% (vol/vol) CO2. Circuit plasmid transfection was
performed with jetPRIME (Polyplus) in 12-well plates at a plating density of
200,000 cells. Transfection was performed 24 h after seeding, and each well
received 10 ng of plasmid containing node X and 25 ng of plasmid containing
nodes Y and Z, with 500 ng of cotransfection junk DNA and varying amounts of
siRNA. Detailed information is provided in SI Appendix, SI Methods.

Fluorescence Microscopy. Approximately 48 h after transfection of network
plasmid, fluorescence images of live cells were captured using an Olympus IX81
microscope. For ambient temperature control, the entire apparatuswashoused in
a Precision Control environmental chamber. The images were captured using a
Hamamatsu ORCA 03 digital camera. Detailed information is provided in SI
Appendix, SI Methods.

Flow Cytometry. All FACS experiments were performed 48 h after transfection
with BD LSRFortessa. Data acquisition was performed using FACS Diva software
and subsequent analysiswith FlowJo (Treestar). The threshold fluorescence unit for
selecting fluorescence-positivepopulationwasdeterminedbasedonuntransfected
HEK293 cells (SI Appendix, Fig. S14). There was no compensation performed (SI
Appendix, Fig. S15). Detailed information is provided in SI Appendix, SI Methods.

Modular Response Analysis. To obtain the pair-wise sensitivities between each
node, we performedmodular response analysis. InMRA, the local intermodular
interactions, described by the local response matrix rij, are calculated from the
global response matrix Rij, which contains the observed change in the steady-
state measurement of each node (xi) due to the experimental perturbation
(pj). Because precise measurement of parameter perturbation size (pj) is not
possible in an experimental setting, the global response matrix is approxi-
mated by the fractional change of the steady states Rij ∼ Δln(xj). After
obtaining Rij from experimental data, we calculate the local response matrix rij
by solving rij =−[dg(Ripj-1)] -1·Ripj-1. Detailed information is provided in SI Appendix,
Modular Response Analysis Method.

Resampling. To estimate the 95% confidence interval of the obtained local
response matrix, bootstrap resampling of the original flow cytometry pop-
ulation is performed. The steps for bootstrap resampling are as follows: From
the original flow cytometry population, resample with replacement the same
number of cells as the original population. Using the resampled population,
compute the desired population statistic (mean), and then calculate the local
response matrix using MRA. The bootstrapping and MRA process is repeated
2,000 times to create a distribution of local responses. The 95% confidence
interval, which corresponds to values from 2.5th to 97.5th percentile of the
calculated values, is used to estimate the error. The process is shown in SI
Appendix, Fig. S11.

ACKNOWLEDGMENTS. This work was funded by the US National Institutes
of Health Grants GM098984, GM096271, CA17001801, National Science
Foundation Grant CBNET-1105524, and the University of Texas at Dallas. E.S.
partially supported by Air Force Office of Scientific Research Grant FA9550-
14-1-0060.

1. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science
295(5560):1664–1669.

2. Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and
identifying compoundmode of action via expression profiling. Science 301(5629):102–105.

3. Khammash M (2008) Reverse engineering: The architecture of biological networks.
Biotechniques 44(3):323–329.

4. Kholodenko BN, et al. (2002) Untangling the wires: A strategy to trace functional in-
teractions in signaling and gene networks. Proc Natl Acad Sci USA 99(20):12841–12846.

5. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling
networks derived from multiparameter single-cell data. Science 308(5721):523–529.

6. Kholodenko B, Yaffe MB, Kolch W (2012) Computational approaches for analyzing
information flow in biological networks. Sci Signal 5(220):re1.

7. Basso K, et al. (2005) Reverse engineering of regulatory networks in human B cells.
Nat Genet 37(4):382–390.

8. Chen JC, et al. (2014) Identification of causal genetic drivers of human disease
through systems-level analysis of regulatory networks. Cell 159(2):402–414.

9. Yeung MK, Tegnér J, Collins JJ (2002) Reverse engineering gene networks using singular
value decomposition and robust regression. Proc Natl Acad Sci USA 99(9):6163–6168.

10. Tegner J, YeungMKS, Hasty J, Collins JJ (2003) Reverse engineering gene networks: Integrating
genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 100(10):5944–5949.

11. Feizi S, Marbach D, Médard M, Kellis M (2013) Network deconvolution as a general
method to distinguish direct dependencies in networks. Nat Biotechnol 31(8):726–733.

12. Marbach D, et al. (2010) Revealing strengths and weaknesses of methods for gene
network inference. Proc Natl Acad Sci USA 107(14):6286–6291.

13. Margolin AA, et al. (2006) ARACNE: An algorithm for the reconstruction of gene regu-
latory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7.

14. Marbach D, et al.; DREAM5 Consortium (2012) Wisdom of crowds for robust gene
network inference. Nat Methods 9(8):796–804.

15. de la Fuente A, Brazhnik P, Mendes P (2002) Linking the genes: Inferring quantitative
gene networks from microarray data. Trends Genet 18(8):395–398.

16. Friedman N (2004) Inferring cellular networks using probabilistic graphical models.
Science 303(5659):799–805.

17. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze
expression data. J Comput Biol 7(3-4):601–620.

18. Pe’er D (2005) Bayesian network analysis of signaling networks: A primer. Sci
Signaling 2005(281):pl4.

19. Prill RJ, et al. (2010) Towards a rigorous assessment of systems biology models: The
DREAM3 challenges. PLoS One 5(2):e9202.

20. Cantone I, et al. (2009) A yeast synthetic network for in vivo assessment of reverse-
engineering and modeling approaches. Cell 137(1):172–181.

21. Bleris L, et al. (2011) Synthetic incoherent feedforward circuits show adaptation to
the amount of their genetic template. Mol Syst Biol 7:519.

22. Shimoga V, White JT, Li Y, Sontag E, Bleris L (2013) Synthetic mammalian transgene
negative autoregulation. Mol Syst Biol 9:670.

23. Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells:
Next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15(2):95–107.

24. Kang T, et al. (2013) Reverse engineering validation using a benchmark synthetic
gene circuit in human cells. ACS Synth Biol 2(5):255–262.

25. Milo R, et al. (2002) Network motifs: Simple building blocks of complex networks.
Science 298(5594):824–827.

26. Ma’ayan A, et al. (2005) Formation of regulatory patterns during signal propagation
in a Mammalian cellular network. Science 309(5737):1078–1083.

27. Fire A, et al. (1998) Potent and specific genetic interference by double-stranded RNA
in Caenorhabditis elegans. Nature 391(6669):806–811.

28. Sontag E, Kiyatkin A, Kholodenko BN (2004) Inferring dynamic architecture of cellular
networks using time series of gene expression, protein and metabolite data.
Bioinformatics 20(12):1877–1886.

29. Rinaudo K, et al. (2007) A universal RNAi-based logic evaluator that operates in
mammalian cells. Nat Biotechnol 25(7):795–801.

30. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic
mammalian oscillator. Nature 457(7227):309–312.

31. Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network
topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–330.

32. Andrec M, Kholodenko BN, Levy RM, Sontag E (2005) Inference of signaling and gene
regulatory networks by steady-state perturbation experiments: Structure and accu-
racy. J Theor Biol 232(3):427–441.

33. Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: Retroactivity and
insulation. Mol Syst Biol 4:161.

34. Efron B (1979) Bootstrap methods: Another look at the jackknife. Ann Stat 7(1):1–26.
35. Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G (2011) Crowd-

sourcing network inference: The DREAM predictive signaling network challenge. Sci
Signal 4(189):mr7.

36. Alon U (2007) An Introduction to Systems Biology: Design Principles of Biological
Circuits (Chapman & Hall/CRC, Boca Raton, FL), p 301.

37. Moore R, et al. (2015) CRISPR-based self-cleaving mechanism for controllable gene
delivery in human cells. Nucleic Acids Res 43(2):1297–1303.

38. Li Y, Moore R, Guinn M, Bleris L (2012) Transcription activator-like effector hybrids for
conditional control and rewiring of chromosomal transgene expression. Sci Rep 2:897.

39. Kreimer A, Borenstein E, Gophna U, Ruppin E (2008) The evolution of modularity in
bacterial metabolic networks. Proc Natl Acad Sci USA 105(19):6976–6981.

40. Bassett DS, et al. (2011) Dynamic reconfiguration of human brain networks during
learning. Proc Natl Acad Sci USA 108(18):7641–7646.

41. Bullmore E, Sporns O (2009) Complex brain networks: Graph theoretical analysis of
structural and functional systems. Nat Rev Neurosci 10(3):186–198.

12898 | www.pnas.org/cgi/doi/10.1073/pnas.1507168112 Kang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507168112/-/DCSupplemental/pnas.1507168112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1507168112

